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This paper introduces the concept and design of a new integrated approach to long-range
autonomous Mars rover localization based on the incremental bundle adjustment and
visual odometry technologies that have been individually experimented with during the
2003 Mars Exploration Rover mission. The design result indicates that a rover would have
avarying performance in traversing from 7.5 to 118 m within one traverse leg under vari-
ous scenarios including camera systems and traverse geometry, while maintaining the
onboard rover localization accuracy at 1%. To implement the proposed integrated ap-
proach, the key is to develop autonomous cross-site tie point selection algorithms for au-
tomatic generation of a sufficient number of high quality tie points to link all the images
and to form the image network. New methods of rock extraction, rock modeling, and rock
matching from multiple rover sites are developed to automate cross-site tie point selec-
tion. Rocks are extracted from three-dimensional ground points generated by stereo im-
age matching, and then modeled using analytical surfaces such as hemispheroid, semiel-
lipsoid, cone, and tetrahedron. Rocks extracted and modeled from two rover sites are
matched by a combination of rock model matching and rock distribution pattern match-
ing. The matched rocks are used as cross-site tie points for a subsequent bundle adjust-
ment. The presented results show that the proposed cross-site tie point selection approach
functions successfully for medium-range (up to 26 m) traverse legs. © 2007 Wiley Periodicals,
Inc.
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1. INTRODUCTION

In planetary surface robotic operations, such as the
current Mars Exploration Rover (MER) mission and
the planned 2009 Mars Science Laboratory (MSL)
mission, it is critical to obtain the location and atti-
tude information of a rover with a high degree of ac-
curacy both for safe rover navigation and for achiev-
ing science and engineering goals (Arvidson et al.,
2004; Li et al., 2004; Li, Squyres et al., 2005). For future
explorations, the rover would be required to traverse
more than the 9 km that is achieved by the Oppor-
tunity rover currently. There is always the desire to
travel a longer distance within each command cycle
so that the rover can explore a landing site as far as
possible within its lifetime. Furthermore, the terrain
to be explored may be so difficult that autonomous
navigation would require highly detailed informa-
tion of the environment in real time and at a high ac-
curacy. In addition, the targets investigated may be
very far from each other and the observations may be
related spatially and/or temporally. These present a
great challenge to rover localization and mapping
technologies.

Mobile robot localization and navigation in an in-
door or outdoor environment have been researched
by Jarvis (1993), Borenstein, Everett, Feng & Wehe
(1997) and Spero (2004). The positioning methodolo-
gies can be categorized as dead-reckoning methods
(odometry and inertial navigation) and reference-
based methods that includes Global Positioning Sys-
tems (GPS), landmark based navigation, and model
(map) matching techniques. As demonstrated in the
2005 DARPA Grand Challenge, autonomous land ve-
hicle navigation and localization achieved a success-
ful level in an outdoor desert environment. Five ve-
hicles completed the course of 132 miles between 6 h
53 min and 12 h 51 min (Buehler, 2006). However,
these navigation and localization technologies may
not be directly applicable to the Martian environment
because of unavailability of GPS on Mars, payload
and power limitation, and other Mars relevant
constraints.

Planetary rover localization research has been
carried out at the Jet Propulsion Laboratory (JPL) us-
ing several advanced methods including position
and heading estimation by remote viewing of a col-
ored cylindrical target (Volpe, Litwin & Matthies,
1995), maximum likelihood matching of range maps
(Olson & Matthies, 1998; Olson, 2000), and visual
odometry (VO) algorithms (Matthies, 1989; Olson,
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Matthies, Shoppers & Maimone, 2000, 2003). Schen-
ker, Huntsberger, Pirjanian, Baumgartner & Tunstel
(2003) reviewed JPLs recent research on planetary
rover developments that may support future Mars
exploration and sample return missions. Many field
tests were conducted by JPL on Earth to validate Mars
rover technologies including navigation and localiza-
tion (Baumgartner, Aghazarian & Trebi-Ollennu,
2001) and to rehearse planetary mission operations
(Tunstel et al., 2002). The Robotics Institute at Carn-
egie Mellon University (CMU) designed and devel-
oped various robotic systems and vehicles for indus-
trial and military applications. In recent years, CMU
performed field experiments for robotic investigation
of life in the Atacama Desert of Chile that is an analog
to Mars (Wettergreen, Cabrol, Teza et al., 2005; Wet-
tergreen, Cabrol, Baskaran et al., 2005). Rovers Hype-
rion and Zoé, respectively, were tested in the experi-
ments, and long-range autonomous traverses (e.g.,
more than 1 km within a single command cycle) were
achieved. The rover localization accuracy was 3%—5%
of distance traveled based on dead-reckoning
method that integrated wheel encoders, roll and pitch
inclinometers and yaw gyro (Wettergreen, Cabrol,
Teza et al., 2005). Centre National d’Etudes Spatiales
is also developing Mars rover autonomous naviga-
tion technology based on Inertial Measurement Unit
(IMU), odometry and stereo vision (Mauratte, 2003).
Li et al. (2002, 2004) developed a bundle adjustment
(BA) method for long range Mars rover localization
using descent and rover images.

In the Mars Pathfinder (MPF) mission, the rover
Sojourner was localized using dead-reckoning sen-
sors. Daily location updates based on lander images
were sent to the rover from Earth (Matthies et al.,
1995). The overall localization error was found to be
about 10% of the distance from the lander within an
area of about 10 m X 10 m. This localization accuracy,
while sufficient for the MPF mission, needed an im-
provement for longer range rover navigation.

In the MER mission, wheel odometry, sun finding
technique using rover images, and IMU are used to
estimate rover positions and attitudes with a de-
signed accuracy of 10%. The onboard VO technique
has been used to correct errors that are often caused
by wheel slippage when the rovers travel on steep
slopes or across loose soils (Maimone, Johnson,
Cheng, Willson & Matthies, 2004). The BA method for
rover localization and topographic mapping has been
utilized on the ground (Earth) to improve the local-
ization accuracy at the Gusev Crater and Meridiani
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Planum landing sites (Li, Squyres et al., 2005; Li,
Archinal et al., 2005; Di et al., 2005). It is demon-
strated that the combined VO and BA methods are ca-
pable of correcting position errors caused by wheel
slippage, azimuthal angle drift and other navigation
errors as large as the 21% experienced within Eagle
Crater at the Meridiani Planum landing site and the
error of 10.5% in the Husband Hill area at the Gusev
Crater landing site. Routinely produced orthoimages,
digital terrain models (DTMs), and rover traverse
maps have been provided to MER mission scientists
and engineers through a web-based geographic infor-
mation system that has greatly supported tactical and
strategic mission operations (Li, Archinal et al., 2005).

This paper introduces the concept of a new ap-
proach to autonomous long-range Mars rover local-
ization based on the integrated BA and VO method.
Rover traverse design and theoretical analysis of
achievable localization accuracy are discussed. Since
the Spirit rover has successfully achieved an accuracy
of 0.5% over a distance of 6 km using an onboard VO
and the Earth version BA, automation of BA plays an
important role for implementation of the proposed
integrated BA and VO method for autonomous long-
range localization. Tie point selection, particularly
cross-site tie point selection is a key component for
autonomous BA. We present a new approach to and
the recent results of an automatic cross-site tie point
selection method that includes rock extraction, rock
modeling, and rock matching.

2. CONCEPT OF AN INTEGRATED APPROACH
TO LONG-RANGE ROVER LOCALIZATION

2.1. Design of the Integrated Approach

This long-range rover localization technology is
based on estimation of rover positions and attitudes
at times of imaging through a three-dimensional
(8D) image network consisting of overhead (orbital
or descent) and rover imagery. The image network is
created by linking the images using tie points which
are commonly ground features, such as remote land-
marks (e.g., hill peaks) and rocks, in the overlapping
regions of the images. An incremental bundle adjust-
ment of the image network provides highly accurate
3D positions of the tie points and rover position and
attitude information through the reconstructed im-
age pointing parameters (Li, Di et al., 2005; Li, Di,
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Agarwal, Wang & Matthies, 2006). The proposed
new autonomous rover localization method aims at
three significant improvements over the Earth based
rover localization technology used in the MER mis-
sion: (1) automation of the cross-site tie point selec-
tion process and development of an onboard version
of the incremental BA software, (2) integration of the
onboard incremental BA with VO to achieve long-
range autonomous rover localization, and (3) devel-
opment of an Earth-based BA software system that
integrates both orbital and ground images of the en-
tire image network to achieve the optimal localiza-
tion accuracy and to update the rover position and
attitude every few command cycles.

Within one command cycle which is usually one
sol, the onboard incremental rover localization sys-
tem is designed to perform real-time localization au-
tonomously using rover images. VO and BA meth-
ods will be integrated with the expectation of
achieving high efficiency and full automation. As il-
lustrated in Figure 1, the rover travels from way-
point W, to W, within a sol, with a stop at midpoint
Wi. Usually, a full (360°) or partial panorama of
Pancam (Panoramic Camera) or Navcam (Naviga-
tion Camera) images is taken at the start and end-
points. Images in the driving directions (forward
and backward) are often acquired at the midpoint.
BA is performed at the waypoints and the midpoint
through the image network including images ac-
quired before W, and at the incremental portion (W,
Wi, and W,). Further, VO is carried out between the
waypoints using more densely collected sequential
Navcam images. VO is used to correct accumulated
errors in odometer-based measurements mainly
caused by slippage and to provide improved posi-
tions and attitudes between BA-based updates. The
VO results are then incorporated into BA in two
ways: (a) VO-estimated incremental camera position
and attitude information is used as the initial input
to the incremental bundle adjustment and (b) the
VO-tracked image features are passed to and em-
ployed in BA. Specifically, the VO-tracked features
are directly used as tie points to link the sequential
images together, while the cross-site tie point selec-
tion method presented in this paper is applied to
link the images taken at waypoints and/or mid-
points and also applied to link the first and last ste-
reo pairs of the VO images to the closest waypoint/
midpoint images. The onboard version of the
incremental BA starts with the uplinked rover posi-
tion and attitude of the last command cycle at a site
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Configuration of the onboard image network. BA performed at the waypoints and the midpoint through the

image network, while VO is carried out between the waypoints using sequential Navcam images.

location with a full or partial panorama (W), which
can be computed on Earth at a higher accuracy. BA
estimates the optimal rover positions and attitudes
at locations within the current command cycle
whenever the “incremental” panoramic and/or mid-
point survey images are taken. The same process re-
peats in each command cycle.

The Earth-based BA is designed to be performed
in two modules. First, on each sol an incremental
bundle adjustment is carried out using rover images
down linked during the previous three sols. Remote
landmarks such as mountain peaks and craters ex-
tracted from orbital images are included to enhance
long-range localization capabilities. The calculated
rover location and attitude of the last location are
uplinked each sol to provide the starting informa-
tion of the following sol. Second, every three sols or
longer, an integrated bundle adjustment of the entire
image network consisting of all available rover and
orbital images will provide the best rover location
information. This Earth-based BA overcomes local-
ization difficulties caused by wheel slippage as well
as long-term accumulative errors such as IMU drift.
Since the pointing information of each image in the
network is improved as a byproduct of the BA pro-
cess, high quality mapping products such as DTMs,
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landmark maps, rover paths, and seamless orthoim-
ages can then be generated to support navigation
and other mission operations.

2.2. Rover Traverse Design and Accuracy Analysis

BA is a method that employs the above introduced
image network along the long-range traverse for
precision rover localization. Therefore, the configu-
ration of the rover traverse directly affects the attain-
able localization accuracy, as well as the feasibility
and effectiveness of the cross-site tie point selection
method that is used to build the image network. To
study the potential accuracy of rover localization un-
der different traverse configurations, we performed
a rover traverse design and accuracy analysis based
on a rover traverse simulation study (Di, Li, Mat-
thies & Olson, 2002). A number of variations includ-
ing traverse leg length (distance between adjacent
sites), number of tie points, and convergence angle
(see definition later) were investigated. Table I lists
the parameters of the cameras assumed in the analy-
sis, including MER Navcam, MER Pancam, and a
camera similar to the planned MSL Navcam. The
range measurement error is proven to be propor-
tional to the square of the range and the azimuth
measurement error that can be set as the angular
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Table I. Camera parameters used in localization accuracy
analysis.
MER MSL-like MER
Navcam Navcam Pancam
Stereo base 20 cm 30 cm 30 cm
Focal length 14.67 mm 14.67 mm 43 mm

error caused by 1 pixel shift (Moffit & Mikhail, 1980;
Di et al., 2002; Li & Di, 2005). The photogrammetric
error propagation method is used to analyze the re-
lationships between the desired rover localization
accuracy (BA) and the various network configura-
tions. Visual odometry data is not simulated nor
used in this accuracy analysis. Since VO would pro-
vide better initial orientation parameters for images
taken between waypoints, the overall accuracy of
rover localization is ultimately determined by
bundle adjustment of the image network. Thus, the
estimated accuracy in this theoretical analysis
should represent the attainable accuracy of the inte-
grated rover localization approach.

The analysis was first performed for the case of
a traverse with only two sites (Figure 2). The
traverse leg is the distance between two sites (Site 0

o Site 0
+ Site 1
6 s Landmark

Convergence angle

0 2 4 6 8 10 12 14 16 18 20

X (m)

Figure 2. Tie point distribution and convergence angle of
a traverse with two sites. Cross-site tie points are evenly
distributed in the middle of the overlapping area. Differ-
ent convergence angles correspond to different relative
spacing of the tie points.
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Table Il. Optimal traverse parameters (convergence angle
and leg length) estimated under various scenarios for
maintaining one percent localization accuracy.

Image network

configuration
Convergence MSL-

No. of tie  angle and MER like MER
points leg length  Navcam Navcam Pancam
2 Angle (°) 71 71 71

Length (m) 75 11.2 33
4 Angle (°) 88-86 90-86 86
Length (m) 19 28.6 85
6 Angle (°) 86-84 88-84 84-83
Length (m) 22 324 100
9 Angle (°) 79-64 86-66 64-62
Length (m) 26 38.8 118

and Site 1 in Figure 2). We assume that the cross-site
tie points which connect forward looking and back-
ward looking images of the two sites are evenly dis-
tributed in the middle of the overlapping area. Fig-
ure 2 shows an example of nine tie points and the
convergence angles which are defined as the angle at
either site between the beginning and end sights
covering the set of tie points. For each configuration,
we fix the number of tie points and camera param-
eters, and change the convergence angle and the leg
length to find the optimal convergence angle and
traverse leg length for maintaining a desired local-
ization accuracy (e.g., 1% for onboard localization).
The results are illustrated in Table I Specifically, the
localization accuracy is given in a relative way, a ra-
tio between the position error at the end of the
traverse (Site 1) and the traverse length (distance be-
tween Site 0 and Site 1). For example, if the traverse
length is 30 m and the position error at the end of
the traverse is 30 cm, the (relative) localization accu-
racy is 1%. In Table II, the optimal convergence angle
is the angle that will give the smallest localiza-

tion error for different leg lengths with a fixed num-
ber of tie points and camera setting; it may be
slightly different for different leg lengths (see the
angle range in the table). Given a fixed number of tie
points and camera setting, the optimal leg length is
the maximum length of the traverse segment that
meets the 1% error limit with an optimal conver-
gence angle.
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Based on the results of the two-site analysis in
Table II, the following trends can be observed:

1. A desired rover localization accuracy can be
achieved by different network configurations
with various factors such as traverse leg
length, convergence angle, number of tie
points, and camera system parameters (ste-
reo base, focal length, etc.).

2. Given other network parameters, increasing
the number of tie points allows the rover to
traverse a longer distance (leg length).

3. Given the number of tie points and other net-
work parameters, a camera system with a
longer stereo base and a longer focal length
(Table I) can also support a longer traverse
leg.

4. For example, with nine well-distributed tie
points in the middle of two sites, a rover can
limit its localization error within 1% and at
the same time increase its traverse leg length
from 26 m (using MER Navcam) to 39 m (us-
ing MSL-like Navcam), or even to 118 m (us-
ing MER Pancam).

To extend the two-site case to the entire traverse
with many sites, we applied the camera parameters
in Table I and the analysis results of the two-site
traverse segment in Table II to propagate the errors
through the traverse (Li & Di, 2005). Under the con-
straints of nine tie points and the localization accu-
racy of 1% for each traverse leg (one segment), we
computed the required number of sites, traverse leg
length, and the expected localization accuracy at the
end of a 5 km traverse as presented in Table IIL

Suppose for one traverse segment with a leg
length of D;, the absolute localization error (stan-
dard deviation) is m;, the relative error is then
my/D;. According to the error propagation rule, the
absolute localization error of an n segment traverse
will be \nm, if all the legs have the same length of
D, (overall traverse length nD;) and the same error
of m;. As a result, the relative localization error of

the entire traverse will be V%ml /(mDyy=my/ (\r’ZDl),

which is 1/ \,@ of the relative error of one traverse
segment. That is why we can observe that the rela-
tive localization accuracy of a 5 km traverse is better
that those of one leg in Table III.

From Table III, we can observe that if the relative
localization accuracy of each traverse leg is better
than 1%, an overall relative localization accuracy of
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Table lll. Traverse design of and error analysis for a 5 km
traverse.
MSL-

MER like MER
Camera system Navcam  Navcam  Pancam
No. of sites 194 130 44
Traverse leg 26 38.8 118
length
No. of tie points 9 9 9
within one leg
Localization 1 1 1
accuracy of one
leg (0/0)
Localization 0.072 0.088 0.15

accuracy of the
5 km traverse (%)

0.1% to 0.2% would be achievable for a 5km
traverse. The derivation and computation process of
Table III is lengthy and cannot be fully described in
this paper because of the space limit. The technical
details are discussed in Li & Di (2005). Furthermore,
this result is verified to be close to the performance
of the Spirit rover at Gusev crater on Mars where the
rover achieved an accuracy of 0.5% over a distance
of 6 km during its initial operation period without
the above assumptions met completely. We expect
that post mission processing will result in an accu-
racy that will be more comparable to that in Table III
although some traverse leg lengths are beyond those
specified in Table IIL

In the development of the automatic cross-site
tie point selection method, we considered the above
theoretical analysis by picking the test data accord-
ing to the optimal leg length and selecting evenly
distributed tie points in the middle of the overlap-
ping area. Our goal is to automate the cross-site tie
point selection process while maintaining one per-
cent accuracy for each traverse segment.

2.3. Visual Odometry

As illustrated in Figure 1, VO is critical for rover
position and attitude updates between waypoints
where BA uses the VO result as its initial input into
the model and provides the improved rover location
and attitude information. In addition, VO also con-
tributes to the achievement of the desired accuracy

Journal of Field Robotics DOI 10.1002/rob
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(e.g., 1%) between two adjacent sites (one traverse
leg, Figure 2) in the above traverse accuracy analy-
sis, so that the overall traverse accuracy (e.g., 0.1%—
0.2%) can be obtained. In principle, the VO algo-
rithm estimates the rover motion by tracking visual
features between consecutive stereo pairs in both
two-dimensional (2D) pixel coordinates and 3D
ground coordinates (Matthies, 1989; Olson et al.,
2000, 2003). It has been successfully used in the MER
mission for precision instrument placement, estima-
tion of local rover position and attitude information
by overcoming wheel slippage, and supply of the
initial input to BA for global localization (Maimone
et al., 2004; Li, Squyres et al., 2005). Further improve-
ment of the VO algorithm is being carried out to
increase reliability, accuracy and driving speed. We
are investigating an inertial-visual-odometry algo-
rithm that fuses data from three sensors: a stereo
camera system, an IMU, and wheel encoders.

3. AUTOMATIC CROSS-SITE TIE POINT
SELECTION FOR AUTONOMOUS INCREMENTAL
BUNDLE ADJUSTMENT

Implementation of the proposed integrated approach
to long-range rover localization depends on automa-
tion of VO and BA performed onboard the rover. VO
has been successfully employed onboard the rovers
in the MER mission. BA has been effectively applied
in the mission as a ground software system because
most of the cross-site tie points are selected by human
operators. Therefore, the key is to develop autono-
mous cross-site tie point selection algorithms for au-
tomatic generation of a sufficient number of high
quality tie points to link all the images and to form
the image network. The selection of the tie points
within one full panorama at one site has been auto-
mated and routinely performed in the MER rover lo-
calization (Xu, 2004; Di et al., 2005). A great challenge
is the automatic selection of cross-site tie points
where objects (e.g., rocks) used as tie points look sig-
nificantly different from different views, especially
from forward and backward views. We developed a
new approach to automatic selection of rocks as
cross-site tie points through rock modeling and rock
matching as described in Figure 3.

Rocks are one of the major features/objects found
in rover images of the Martian terrain. In order to link
rover images taken at adjacent sites and thus build
the image network, it is desirable to extract, model
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Input and output data

Process steps [ Dense 3D ground points }

Rock modeling

Rock peaks and surface points]

model parameters

Rock peaks and rock ]

Rock matching (model
matching aITd pattern Matched rock peaks as
matching) R
cross-site tie points

Figure 3. Diagram of automatic cross-site tie point
selection.

and match rocks from multiview ground images. Ob-
ject detection and modeling from multiple view-
points has been addressed in the computer vision
community. A complete survey of object detection
and geometric modeling techniques is outside the
scope of our paper. We only briefly review several
most relevant papers below.

Gor, Castano, Manduchi, Anderson & Mjolsness
(2001) developed a rock detection method that uses
image intensity information to detect small rocks and
uses range information to detect large rocks from
Mars rover images. In detection of large rocks, a least-
squares plane (ground) is fitted using the range data,
and the above-ground height of a range point is cal-
culated as the distance between that point to the
plane. Large rocks are then extracted through a
height segmentation process. Subsequently, the shape
of the extracted rocks is modeled by seven metrics:
eccentricity, ellipse error, 2D sphericity, 2D angularity,
ellipsoid error, 3D sphericity, and 3D angularity
(Castano et al., 2002; Fox, Castano & Anderson, 2002).
The rock detection and shape modeling methods are
included in JPL's Onboard Autonomous Science In-
vestigation System and have been tested for use in
autonomous rock shape analysis by the Mars rover,
the aim of which is to enable the rover to direct its
activities to regions of higher geologic significance
and to prioritize the downlink of data, thus maximiz-
ing the scientific return of the mission (Castano et al.,
2005).

CMU researchers developed a rock detection
method based on segmentation, detection, and clas-
sification using texture, color, shape, shading, and
stereo data from the Zoé rover (Thompson, Niekum,
Smith & Wettergreen, 2005). A multiple-view detec-
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tion method was also developed by the same group
to fuse rocks extracted from multiple views based on
expectation maximization clustering, which does not
require an explicit correspondence search of rocks
(Thompson & Wettergreen, 2005). The aim of this
multiple-view object detection is to yield a better un-
derstanding of the scene than any one view alone.
The rover images of different views used in the ex-
periment were acquired from relatively close posi-
tions (2 m apart).

In our approach, the rocks are detected from
dense ground points generated from stereo images
acquired at each site (Figure 3). As a result, the rock
detection process provides a rock peak and a set of
rock surface points for each rock, which are further
used to fit a number of analytical surface models such
as cone or spheroid. Each rock is then represented by
a surface model that best fits the extracted rock sur-
face points. After the rocks are modeled, matching of
rocks from adjacent sites are carried out by a compari-
son of individual rock models as well as the two glo-
bal rock (peak) distribution patterns from the two
sites. Finally, the matched rock peaks are utilized to
link rover images and to build the image network.

Our rock detection and modeling methods are
different from the existing methods mentioned
above, reflecting the different purposes of the meth-
ods. The purposes of the existing methods are to de-
tect as many rocks as possible and to model the
shapes of the rocks for autonomous geological analy-
sis. The objectives of our methods are to extract and
match a sufficient number of rocks from different
views at two adjacent rover sites (which are far apart)
for autonomous rover localization. It is not necessary
to extract small rocks as long as the number of big
rocks is sufficient. As for rock modeling, from our ex-
perience of manual cross-site tie point selection, the
size of a rock is usually more significant than the
shape of the rock for multi-view matching. Thus, the
purpose of our rock modeling (surface fitting)
method is to reliably estimate the size (i.e., height, ra-
dius, etc.) of a rock.

3.1. Rock Extraction

In order to detect and describe rocks, detailed topo-
graphic information of the area between two sites
needs to be reconstructed. To a large degree, general
terrain features can be characterized by “interest”
points which could be rocks peaks, sharp corners,
ridge points, and others. They are extracted from
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Figure 4. TIN-controlled 3D dense image matching. The
vertices of the triangles are the matched and verified inter-
est points on the left image of a stereo pair. The triangles
were created and used to predict the approximate location
of the homologous point of a dense grid point. The white
dots are matched dense grid points.

stereo images at each site using a Forstner interest
operator. The interest points are then matched by
using crosscorrelation. They are further processed by
verification of parallax consistency and outlier elimi-
nation. These interest points generally cover most
rock peaks that are sufficient for BA (Xu, 2004; Di et
al., 2005).

The matched interest points are practically too
sparse to model the rocks, particularly in the middle
or far range from the rover. To obtain potential rock
surface points, a triangulated irregular network
(TIN) controlled dense image matching is performed
to produce a terrain model (grid) with a grid-cell
size of 3 X3 or 5X5 pixels. First, a TIN is generated
from the matched interest points on the left image
(Figure 4); the parallax is then calculated at each
node (vertex). Second, for each grid point on the left
image, its homologous image point on the right im-
age is estimated using linear interpolation of paral-
lax from the vertices of the triangle that covers the
grid point. The actual homologous point in the right
image is refined by crosscorrelation within a small
search range (e.g., three pixels) from the estimated
position. Since the dense matching is well controlled
within a very small window controlled by the reli-
ably matched interest point, this two-level matching
strategy improves the overall reliability and speed of

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. Rock peak (white dot) and surface points (gray dots) extracted in the iterative process for one rock.

image matching. After dense matching, dense 3D
ground points are calculated through space intersec-
tion of homologous image points.

Figure 4 shows an example of dense matching
using MER Navcam images taken by the Spirit
rover. It can be observed that there are a sufficient
number of 3D ground points (both interest points
and grid points) on the rock surfaces to facilitate
rock extraction and modeling in the subsequent
steps. We can also see that there are some grid points
missing, where the cross-correlation coefficient is
less than a predefined threshold (e.g., 0.75).

Rock peaks are extracted from the reconstructed
3D ground points using the following criteria: (1)
they are the local maxima within a window of, for
example, 50 X 50 ¢cm; (2) the maximum elevation dif-
ference within the window is greater than a thresh-
old (e.g., 10 cm); and (3) there are a sufficient num-
ber of ground points (at least three) within the
window.

Extraction of Rock Surface Points

In addition to the rock peak, rock surface points are
needed to describe the shape of a rock and also to fit
an analytical rock model. Initiating from a rock peak,
we look for ground points that are on the same rock
in the vicinity of the peak by an automatic searching
procedure.

1. A 3D plane is estimated using the terrain
points within an area of 70 cm X 70 cm from
the rock peak. In principle, the candidate rock
surface points are those above the plane. On
the other hand, the ground points are on or

very close to the plane. The rock height H is
calculated as the perpendicular distance from
the peak to the fitted plane.

2. Surface points are searched among the points
above the fitted plane using a dynamic search
range. The search range is proportional to the
rock height H: kH, where k varies from 0.3 to
1.7 based on a ground truth experiment in
which manual measurements of rocks at the
Spirit site were made and the coefficient k
was calculated. Initially the search from the
rock peak is made in a range with the low
limit radius of 0.3H. Each time a point is
found, the distance from this point to the
closest neighboring point is calculated. The
maximum of these distances,
MaxD_Neighbor, is determined.

3. An extended search is performed from each
point found in the last step and within the
range of MaxD_Neighbor. Therefore, the
overall search radius from the peak is in-
creased by MaxD_Neighbor. This step repeats
for all points found in the last step until the
overall search radius reaches the upper limit
of 1.7H, or no new points in the neighbor-
hood can be added.

Figure 5 shows the rock peak and rock surface
points of one rock extracted in the iterative process.
The white dot is the rock peak, while the gray dots
are the extracted surface points. Additional ex-
amples of extracted rock peaks and surface points of
other rocks are shown in Figure 6.

The above method was successfully applied to
extract peaks and surface points of various types of

Figure 6. Other examples of extracted rock peaks (white dots) and rock surface points (gray dots) of six different rocks.
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rocks that are about 15 m from the rover, including
large rocks (e.g., 0.5 m high). The algorithm met dif-
ficulties when dealing with a rock complex where a
number of rocks stand closely together and severe
occlusions block some rock peaks and surface
points. However, as long as a sufficient number of
rocks can be extracted and matched between two
sites, the incremental BA can be achieved.

3.2. Rock Modeling

Compared to the above discrete information of the
rock peak and surface points extracted from images
taken at a certain view point(s), an analytical model,
such as a cone, provides more information under the
assumption that the peak and surface points can be
used to infer the part of the rock surface which is not
visible to the camera if a symmetric model is used.
Furthermore, a rock model with its parameters is
more efficient for comparison with other rocks mod-
eled in the same way.

Based on the extracted rock peak and surface
points, we can model a rock by using a 3D analytical
surface, such as hemispheroid, semiellipsoid, cone,
or tetrahedron. The equations for a hemispheroid, a
semiellipsoid, and a cone are

x2 2 22
Attt <D
x2 2 ZZ
2t @

and

r

¥ +yt=(z- h)zﬁ,

@)

respectively. The parameter r is the radius of the
hemispheroid or radius of the bottom circle of the
cone; a and b are semimajor and semiminor axes of
the semiellipsoid; and & is the height in all three
equations. No analytical equation exists for the tet-
rahedron model. Therefore we use three parameters
to represent a tetrahedron: height h, radius of the
enclosing circle of the bottom triangle, and orienta-
tion angle ¢ of the bottom triangle.
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The model parameters of each individual rock
are estimated by a least-squares fitting using the sur-
face points on the rock. Since the equations of these
analytical models are nonlinear with respect to the
model parameters, linearized equations are derived
using Taylor’s theorem and are used for least
squares computation, where the model parameters
are calculated iteratively.

As an example, we give the mathematical details
of the hemispheroid model fitting. Rewriting Eq. (1)
as F(r,h)=x*/r*+y*/r*+z*/h*-1=0, the linearized
hemispheroid equation becomes

Feryr Ears Eano (4)
= + —Ar + — =y,
0" or oh

where r and h are unknowns; dF/dr=-2(x*+y?) /7>
and oF/oh=-2(z%/h3) are partial derivatives; F; is
the value of F(r,h) calculated using the initial values
of r and /. For example, the value of rock height H
obtained in the previous step of rock surface point
detection can now be used as the initial value of / in
Eq. (4). Then, the observation equation for least
squares fitting is

EET
o oh|lAan | " ®)

Each surface point contributes to one observation
equation of Eq. (5). Putting the observation equa-
tions for all n surface points (i=1,2,...,n) of a rock
together, a matrix form of the observation equations
can be expressed as

AX

Il
h

(6)

_2(6G+yD) 27

1,3 h3
2(x% + y%) 22%
h A=| -————— - —
where 3 B ,
C20Gtyn) 2z
r3 h3 nx2
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The least squares solution of Eq. (6) is
X=(ATA)ATL.

In jth iteration, the model parameters are updated

by
{r} [r] [ r} ¢
h j h j-1 Ah j' @

Points that are far (e.g., 10 cm) from the estimated
surface are eliminated during the iterative process. If
the number of the remaining surface points is less
than 5 after elimination, the computation is termi-
nated and the rock is considered not to fit the par-
ticular model. If none of the models fits a rock, the
rock will be discarded.

To evaluate the fitting accuracy of each model
for a particular rock, the root mean square (rms) er-
ror of the fitted surface model is calculated

(Zi = Zi model) >
s = i i,model , ( 8)
n

where z; is the height value of the ith surface point,
Zi model 15 the corresponding height value calculated
using the fitted model.

Figure 7 shows nine rocks of different sizes and
shapes. Each rock is modeled by using the four ana-
lytical models. Table IV gives the estimated model
parameters of the four models for each rock, as well
as the associated rms errors of the fitting models.
The highlighted (italic) rms error of each rock is the
minimum among the four models. The correspond-
ing model is considered the best model for that rock.
For example, Rock 1 is best represented by a semiel-
lipsoid, while Rock 2 is best represented by a tetra-
hedron. In addition to statistical evaluation using
rms error (as shown in Table IV), the fitted model
can be backprojected onto the image to check the

Journal of Field Robotics DOI 10.1002/rob
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Figure 7. Nine sample rocks with marked peaks (white
dots) used in rock modeling. The best-fit tetrahedron
model of the ninth rock can be seen overlaid on its image.

quality of model fitting. As an example, the tetrahe-
dron model (best fit) of the ninth rock can be seen
overlaid on its image in Figure 7.

To verify the rock modeling results, we com-
pared the modeled parameters with the ground
truth (manual measurements from stereo images) of
79 rocks in the area between two adjacent sites that
are 26 m apart at the Spirit landing site. For each
rock four metrics were used, including height, ra-
dius, surface area, and volume, which were calcu-
lated from the ground truth measurements and the
estimated model. For the semiellipsoid model, for
instance, the average of 2 and b is considered as the
radius in the comparison. In ground truth measure-
ments, we measured the rock height directly; we
measured the rock width and used half of the width
as the radius. The ground truth surface area and vol-
ume are calculated from the measured height and
radius. On average, of the 79 rocks, the relative dif-
ference between a modeled parameter and the cor-
responding ground truth measurement is 25.1% in
height, 43.7% in radius, 57.1% in surface area, and
103.4% in volume, respectively. It is obvious that
among the four metrics, height is the most reliable
one and thus the most comparable parameter. The
very high difference in volume suggests that it
should not be used for comparison. This verification
result is important for designing the following algo-
rithm of rock matching with various models.

3.3. Rock Matching

Rock matching is used to find corresponding rocks
in the two sets of extracted rocks from two sites.
There are various difficulties in this process: (1)
rocks visible from one site may not be visible or



Wiley author proof [ROB-06-0074]

12 < Journal of Field Robotics—2007

Table IV. Estimated model parameters and rms errors (¢ in radians, all others in cm) of rocks in Figure 7.

Hemispheroid model Cone model

Semiellipsoid model Tetrahedron model

Rock. ID a h rms r h rms a b h rms a h ¢ rms
1 12.2 15.5 45 170 167 393 111 146 156 392 140 167 12 41
2 20.8 26.8 5.1 235 285 49 201 232 274 52 225 285 1.0 44
3 26.3 23.1 5.0 306 246 4.8 21.0 320 240 54 326 246 12 3.8
4 9.3 13.4 54 57 138 54 17.0 52 124 48 87 138 13 41
5 9.1 9.6 2.0 19.0 94 17 10.6 6.8 9.7 152 220 94 12 1.1
6 40.9 35.3 5.1 31.6 405 5.8 385 594 341 51 346 405 01 34
7 22.6 20.0 4.7 258 223 52 147 273 203 46 228 223 08 37
8 28.7 24.2 55 309 254 4.1 254 313 244 52 349 254 08 45
9 13.5 13.2 4.0 162 146 34 151 13.0 132 39 222 146 08 29

identifiable from the other site because of occlusions
and significant distance differences from the sites; (2)
the same rock extracted from different views may
not have the same surface portion imaged; and (3)
information extracted from smaller rocks may not be
sufficiently reliable for matching because of the lim-
ited stereo range capability.

The rock matching technique we developed con-
siders both global rock distribution patterns by rock
pattern matching and individual rock similarities by
rock model matching. Figure 8 shows a detailed dia-
gram of the entire rock matching process.

The two sites are called the current site and ad-
jacent site in Figures 8 and 9. Rock extraction and
modeling are carried out separately from the images
of the two sites. Rock peaks and rock model param-
eters are estimated for each rock. The question is, for

Adjacent site
Rock peaks and rock
model parameters
Local rock pattern /
matching
[ Rock matching candidates ]

Rock model matching Global pattern matching

[ Rock model matching results ] [Rock pattern matching resulls]

—_—

[ Combined matching results ]

¥

[ Final matched rocks }

Current site

Rock peaks and rock
model parameters

Significant rock peaks and
rock model parameters

Significant rock selection
in each grid cell

Figure 8. Rock matching technique using both model
matching and rock distribution pattern matching.
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one rock extracted at the current site, which one ex-
tracted at the adjacent site is its correspondent. We
define a 4 X4 grid in the overlapping area between
the two sites (Figure 9). In implementation, the over-
lapping area is determined by an intersection of two
60 m X 60 m boxes surrounding the two site centers.
Within each grid cell, we select a limited number of
significant rocks (e.g., up to 3), which are usually the
highest rocks in the grid cell. Note that some of the
grid cells may not have any significant rocks either
because there are no rocks in a grid cell or none of
the extracted rocks in the cell can be modeled appro-
priately. Only the selected significant rocks at the
current site are used to find their corresponding
rocks at the adjacent site.

For each significant rock extracted at the current
site, a set of extracted rocks at the adjacent site are
individually compared by the rock model matching
technique. The model matching for one rock of the
current site and another of the adjacent site uses an
objective function

-+ Adjacent

1
1

1

1

1

1

i

> 1
site :
1

1

1

1

1

1

1

Current H-
site

Figure 9. A grid is defined in the middle between the two
sites for extraction of cross-site tie points.
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Z = c1fy + Cof s + Cafs, )

where f;, f,, and f; are the relative differences (in
percentage) of height, radius, and surface area be-
tween the two rocks calculated from the two rock
models. The coefficients ¢y, ¢,, and c3 are the relevant
weights, which are set to be 1/2,1/3, and 1/6 based
on the result of rock model verification described
above. The height is given the largest weight since it
is the most comparable parameter. The rock of the
adjacent site with the minimum value of Z in Eq. (9)
is considered a match.

On the other hand, rock pattern matching com-
pares the two geometric distributions of the rock
peaks at the current and adjacent sites. In principle,
a rigid transformation including three rotations and
a 3D translation can be used to depict the relation-
ship between two rock distribution patterns derived
from the two sites. Based on extensive experiments
using Spirit rover data, it was found that the rota-
tional differences are insignificant. This may be be-
cause the sun-positioning technique was periodi-
cally used for absolute rover heading detection
during mission operations. Consequently, a 3D
translation is employed in rock pattern matching.
Furthermore, this makes the pattern matching pro-
cess computationally more efficient. Assume that we
have two sets of extracted rock peaks extracted from
the current site and adjacent site with their positions
as P; (i=1,2,...,I) and Q; (j=1,2,...,]), respectively,
in the 3D ground coordinate system. For rock pat-
tern matching, a subset of significant peaks Py (k
=1,2,...,K) are selected from the points P; (i
=1,2,...,]) and are used to find matches with Qj (j
=1,2,...,]). The pattern matching algorithm works
as follows:

1. For asignificant peak Py from the current site,
we define a searching area (e.g., within a dis-
tance of about 20% of the traverse leg length)
where we find a subset Q,, (m=1,2,...,M)
out of Q; from the adjacent site. For each can-
didate peak Q,, at the adjacent site, calculate
a translation vector Vi ,,=P,—Q,,

2. Apply the translation vector to all the rock
peaks Q; at the adjacent site Q]»’ =Qi+ Vi

3. We check the consistency between P and Q,,
through a pattern comparison using the
translation vector County ,,=Card(||P;- Qi [
<¢), where ¢ is a predefined tolerance. | || de-
notes the norm of the difference vector. Card

Journal of Field Robotics DOI 10.1002/rob
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function represents the number of the pairs of
rock peaks that can be potentially matched.
4. Repeating steps (1)-(3) for all the points in
Q,,, we have all the counts for the point P;.
5. For each significant peak Pj at the current
site, two best candidate rocks Q,,; and Q,,;; in
Q,, at the adjacent site are found, which have
the highest and second highest counts with
their corresponding translation vectors Vy
and Vy ,». We refer to the above process as lo-
cal pattern matching. We repeat the local pat-
tern matching for all significant rocks in Py.
6. For global pattern matching, we check the
consistency of all translation vectors of the
significant rocks Py (k=1,2, ..., K). We deter-
mine the vector V,.qin that represents the
median among all the translation vectors.
Then, for each significant rock Py, find its fi-
nal match by checking the difference between
the individual translation vector Vj ,; and
the global translation vector V4ian. Conse-
quently, Q,,; is considered as a match of Py if
||Vk,ml - Vmedian” = ||Vk,m2 - Vmedian”; otherwise
P, matches with Q,,,. This global matching is
performed for all significant rocks.

Studies using various data sets of Spirit rover
found that a significant number of the correct
matches correspond to the second highest counts in
the step 3 above. That is why in the local pattern
matching we select two candidate rocks from the ad-
jacent site for each significant rock at the current site.
It should also be noted that the local pattern match-
ing improves the efficiency and robustness of the
rock model matching technique by limiting to two
rock candidates and reducing the number of pos-
sible mismatches in model matching.

In both rock model matching and rock pattern
matching, there exist multiple-match cases. That is,
two or more rocks from the current site match the
same rock from the adjacent site. This indicates mis-
matches although one match among these multiple
matches might be a correct match. The rocks with
multiple matches are automatically eliminated in the
matching processes.

It was also found that the results of rock model
matching and rock pattern matching are not very
different. In the end the final matching result is the
combination of the outputs of the two methods.
Only the rocks that pass both matching methods are
considered to be the matched rock pairs.
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Figure 10. Extracted rocks from two sites of Spirit rover.
The triangles are the rock extracted from Site 9600, while
the crosses are those extracted from Site 9700. The rover
location of Sites 9600 and 9700 are marked as dots.

Figure 10 shows an example of automatically ex-
tracted rocks for cross-site tie point selection. Nav-
cam images were taken at Site 9600 and Site 9700 by
the Spirit rover. The two sites are 26 m apart. Thirty-
seven rocks are extracted from Site 9600 (triangles)
and 34 rocks from Site 9700 (crosses). Nine signifi-
cant rocks were automatically selected from the
rocks of Site 9600 in a grid defined between the two
sites. Table V is a summary of the experimental re-
sults of rock matching, including rock model match-
ing, rock pattern matching, and the combined
method for comparison purposes. Figure 11 shows
the final matched rock pairs (combined method),
which are labeled with the same identification num-
bers for both sites.

In Table V, for each particular rock, the rock
model matching (RMM) algorithm and the rock pat-

Figure 11. Automatically matched rocks as cross-sites tie
points that are labeled with the same identification num-
bers. The triangles are the rocks extracted from Site 9600,
while the crosses are those extracted from Site 9700. The
rover locations of Sites 9600 and 9700 are marked with
dots.

tern matching (RPM) algorithm generate one of two
outputs: a unique match, or elimination of the rock
because of multiple matches. The final matching re-
sult is generated by the combination of RMM and
RPM. For each rock, the final output is either a
unique match (if RMM and RPM matching results
are the same) or no match (if RMM and RPM match-
ing results are different or the rock is eliminated be-
cause of multiple matches). In order to verify
whether the matched rocks are correct, the nine
rocks in Table V were also manually matched by an
operator and the manual matching results are used
as ground truth. By comparing the matching results
with ground truth, the unique match is validated as
a correct match or mismatch in Table V. From Figure

Table V. Summary of rock matching results for Sites 9600 and 9700.

Method /Rock ID 1 2 3 4 5 6 7 8 9
Model matching (8 correct matches) d F J N N % N J N
Pattern matching (7 correct matches) - J N J J X N J N
Combined Method (7 correct matches) o¢ N N N N (@) N J N

4 Correct match.

Px Mismatch.

‘O No match.

4_ Eliminated because of multiple matches.
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Table VI. Summary of rock matching results for Sites 11493 and 11422.

Method /Rock ID 1 2 3 4 5 6 7 8 9 10 11 12 13
Model matching Na xP J x J | J | J x - J x
(8 correct matches)

Pattern matching X N N N N N N N N X X J x
(9 correct matches)

Combined Method o¢ (@] J (@) J | | | | (@) (@) y (@)

(7 correctmatches)

4] Corrected match.

Px Mismatch.

‘O No match.

4_ Eliminated because of multiple matches.

11 and Table V, it is demonstrated that rock model
matching (after local rock pattern matching) found
eight matched rock pairs correctly, while one was
eliminated because of multiple matches. Pattern
matching in Table V was performed by local pattern
matching followed by global pattern matching. It
produced seven matched rock pairs. But there were
one mismatched rock and a rock eliminated. In the
final rock matching result, seven rock pairs were
found correctly and two were unmatched. The seven
correctly matched tie points are sufficient for BA of
the two sites.

Table VI gives another example of automatic
cross-site tie point selection using Navcam images
taken at Site 11493 and Site 11422 by the Spirit rover.
The two sites are 18 m apart and the terrain presents
relatively steep slopes. In the combined result, 7 out
of 13 rocks were matched by the software and they
are all correct matches. No mismatches were created
in the combined result. The distribution of the
matched rocks is also good for BA because they are
well distributed in cells of the defined grid. From
both Table V and VI we can observe that rock model
matching and pattern matching generated slightly
different results. Their combinations eliminated the
mismatches and made the results reliable (no mis-
matches).

4. CONCLUSIONS

This paper introduces the concept and design of a
new integrated approach to long-range autonomous
Mars rover localization. In the design, we looked at
changing various rover/camera/environment pa-
rameters and estimated how far the rover could

Journal of Field Robotics DOI 10.1002/rob
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traverse while maintaining 1% onboard localization
accuracy. The design result indicates that a rover
would have a varying performance in traversing
from 7.5 to 118 m to within one traverse leg under
various scenarios to meet the accuracy requirement.
To implement the proposed integrated localization
approach, automatic cross-site tie point selection is a
key process and is developed based on rock extrac-
tion, rock modeling, and rock matching using images
acquired at multiple rover sites. In rock matching, the
rock model matching and rock pattern matching
methods can be employed complementally to elimi-
nate potential mismatches and to enhance reliability
of the matching results. The presented cross-site tie
point selection results show that the proposed ap-
proach functions successfully for medium-range (up
to 26 m) traverse legs. The presented traverse design
and the achieved cross-site tie point selection results
will be used in the future to integrate BA and VO
methods for autonomous onboard long-range rover
localization.
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